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Abstract
The exceptional superalgebra D(2, 1;α) has been classified as a candidate
conformal supersymmetry algebra in two dimensions. We propose an
alternative interpretation of it as an extended BFV–BRST quantization
superalgebra in 2D (D(2, 1; 1) � osp(2, 2|2)). A superfield realization
is presented wherein the standard extended phase space coordinates can be
identified. The physical states are studied via the cohomology of the BRST
operator. Finally we reverse engineer a classical action corresponding to the
algebraic model we have constructed, and identify the Lagrangian equations of
motion.

PACS numbers: 0220S, 1115, 1130P

1. Introduction and main results

In two previous papers we have examined the covariant BFV–BRST quantization of the
scalar [1] and spinning [2] particle respectively. In both these papers we started with a physical
model for the system, whose quantization was shown to admit the real Lie superalgebra
iosp(d, 2/2) as an underlying symmetry. In this paper we take an algebraic approach; as
osp(d, 2/2) is a member of the class of classical simple Lie superalgebras, by an appropriate
generalization it should be possible to extend the quantization superalgebra iosp(d, 2/2) into
a more general classical simple Lie superalgebra. The motivation behind this is the need for a
characterization of admissible spacetime ‘BFV–BRST extended’ supersymmetries in various
dimensions. Here we demonstrate this by studying the particular case of d = 2, which leads
to the quantization of two-dimensional relativistic particles in the exceptional superalgebra
D(2, 1;α).

In this section we briefly define and review the properties of the exceptional superalgebra
D(2, 1;α). In section 2 we shall construct superfield representations of the BFV–BRST
quantization superalgebra corresponding to D(2, 1;α) and study the physical states via the
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BRST operator. This will be done using only the algebraic structure as a guide (i.e. no physical
model). Finally, in section 3 we shall reverse engineer a classical action corresponding to the
algebraic model we have constructed, and identify the corresponding Lagrangian equations of
motion. A preliminary version of the results contained in this paper was published in [3].

The classical simple Lie superalgebras consist of the spl(m/n) and the osp(m/2n)
families, the strange series P(n) and Q(n) and the exceptional algebras F(4), G(3) and
D(2, 1;α). Comprehensive definitions and descriptions of these algebras can be found in
several places, see for example [4–7]. A study of the D(2, 1;α) algebras, including a
detailed analysis of their finite- and infinite-dimensional irreducible representations, has been
carried out by Van der Jeugt [8]. The explicit supercommutation relations of the D(2, 1;α)
superalgebras are given in [9].

The algebras D(2, 1;α) are a one-parameter family of 17-dimensional non-isomorphic
Lie superalgebras. For the special case of α = 1 we have D(2, 1; 1) ∼= D(2, 1) ∼= osp(4, 2).
It is through this special case that we seek to generalize the BFV–BRST quantization algebra.
This aspect will be discussed in more detail in the next section.

The even part of the real superalgebra D(2, 1;α) is the nine-dimensional non-compact
form sl(2,R) + sl(2,R) + sl(2,R), whilst the odd part (of dimension eight) is the spinorial
representation (2, 2, 2) of the even part. The parameter α appears only in the anti-commutation
relations among the components of the tensor products (i.e. the odd components). In terms of
the vectors ε1, ε2, ε3 such that ε2

1 = −(1 +α)/2, ε2
2 = 1/2, ε2

3 = α/2 and εi · εj = 0 if i �= j ,
the root system � = �0̄ ∪�1̄ is given by

�0̄ = {±2εi} and �1̄ = {±ε1 ± ε2 ± ε3} .
In [10], Günaydin studied D(2, 1;α) considered as the superconformal symmetry group

of an family of exotic superspaces in two dimensions defined by the one-parameter family
of Jordan superalgebras JD(2/2)α . In this paper he also derived the full super-differential
operators representing the actions of D(2, 1;α) on the exotic superspaces. Here we similarly
derive a superfield realization; however, it is over a different superspace.

2. The quantized D(2, 1; α) particle

2.1. Preliminaries

The BFV–BRST quantization of relativistic systems provides a cohomological resolution
of irreducible unitary representations (unirreps) of spacetime symmetries. Moreover these
unirreps appear to be associated with constructions of iosp(d, 2/2) for relativistic particles in
flat spacetime, as can be seen in [1] and [2]. In this paper, however, we do not invoke translations
as additional generators and so the algebra reduces to osp(d, 2/2). Here we follow an algebraic
approach, and so require a classification of admissible ‘quantization superalgebras’ in various
dimensions. Some examples of such algebras for Minkowski space (d − 1, 1) [10, 11] are
D(2, 1;α) in d = 2 (note that α = 1 corresponds to osp(2, 2/2)); in d = 3 we have
osp(3, 2/2) which corresponds to anti-de Sitter symmetry (which may thus be relevant to
anyon quantization), and for d = 3 + 1 we get conformal symmetry of four-dimensional
spacetime, and super unitary superalgebras, as possible alternative quantization superalgebras.

In order to detail our construction for the d = 2 case, we firstly outline the scalar particle
quantization in generic d . In second-order form [12] the action is

S = m

∫ τf

τi

dτ

√
dxµ

dτ

dxν

dτ
ηµν (1)
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which leads to the canonical momenta

pµ = ∂L
∂ẋµ

= m
ẋµ√
ẋ2
.

The system has one constraint: the mass shell condition

φ1 = pµpµ −m2 = 0.

In accordance with the BRST prescription, we enlarge the phase space by treating the Lagrange
multiplier λ, associated with this constraint, as a dynamical variable. We then introduce a
vanishing conjugate momentum πλ associated with λ, which forms a second constraint on the
system. The Poisson brackets are the usual ones: {pµ, xν} = δνµ, {λ, πλ} = 1.

The extended action (1) is invariant under the following infinitesimal gauge
transformations:

δλ = ε̇

δxµ = {xµ, εφ1} = 2εpµ

δpµ = {pµ, εφ1} = 0

with ε(τ )being an arbitrary (dimensionless) infinitesimal function such that ε(τi) = ε(τf ) = 0.
As in our two previous papers [1,2] it is necessary to place two restrictions on the system

so that the quantum formulation should be consistent with the equations of motion and guage
fixing at the classical level. Firstly, we choose to work in the class [13–16] λ̇ = 0; moreover we
take gauge fixing with respect to gauge transformations in one of the connected components
of the group. This is equivalent to limiting the quantization of λ to the half line (R+ or R

−).
As a results λ will be quantized on the half line and the system is not modular invariant until
the two distinctly oriented sectors (particle and anti-particle) are combined. Secondly, we
take as a first-class constraint φ2 = λπλ (rather than the usual φ2 = πλ used in the standard
construction). Note that φ2 = λπλ is regular in the sense of Govaerts [12] provided λ �= 0.

The BFV extended phase space [12, 19] for the BRST quantized D(2, 1;α) particle can
now completed by introducing the Grassmann odd conjugate pairs of ghosts η1, ρ1 and η2, ρ2

corresponding to the constraints φ1 and φ2 respectively. Thus the full phase space comprises
the canonical variables

xµ(τ), pµ(τ), λ(τ ), πλ(τ ), η
1,2, ρ1,2.

This allows us to define the canonical BRST operator as

% = η1φ1 + η2φ2.

With a gauge fixing function [13] defined as F = − 1
2λρ2 the Hamiltonian can be calculated

as

H = {F, %} = − 1
2λ

(
η1ρ2 + pµpµ −m2

)
. (2)

In quantizing the system via the standard Schrödinger representation we have the operators
Xµ, Pν corresponding to xµ, pν acting on suitable sets of functions xµ on the half line. For
the remaining operators (λ(τ), πλ(τ ), η1,2, ρ1,2) we find it convenient to define [17] θα and
Qα (α = 1, 2) by

Q1,2 = 1

2
√

2

(
2η1 ± ρ2

)
θ1,2 = 1√

2

( ± ρ1 − 2η2
)

and X− = 1/2(λφλ + φλλ), P+ = λ−1, along with X+ = τ and P− = H , where H is the
Hamiltonian. Thus the full set of operators in the Schrödinger representation is

Xµ, Pν λ, πλ Qα,Xβ P+, X− P−, X+. (3)
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The non-zero commutation relations between these operators are[
Xµ, Pν

] = −iηµν
{
Xα,Qβ

} = iεαβ
[
X−, P+

] = i[
X−, P−

] = −iP−1
+ P−

[
Xα, P−

] = iP−1
+ Qα

[
Xµ, P−

] = iP−1
+ Pµ.

(4)

Having set up our system as such, we find that the operators JAB defined as

Jµ− = XµP− −X−Pµ Jµα = Lµα = XµQα − θαPµ

Jµν = XµPν −XνPµ J+µ = X+Pµ −XµP+

J+α = L+α = X+Qα − θαP+ Jαβ = Kαβ = θαQβ + θβQα

J+− = X−P+ −X+P− Jα− = Lα− = θαP− −X−Qα

(5)

generate the inhomogeneous orthosymplectic superalgebra iosp(d, 2/2). Note that in (5) we
have used the symbol J to represent elements of the even subalgebra so(d, 2), K to represent
the elements of the even subalgebra sp(2,R) and L the remaining odd generators. The graded
commutation relations of this algebra were given in [18], and are repeated here as[[
JMN, JPQ

]] = i(ηNQJMP − [NP ]ηNP JMQ

−[MN ][MP ]ηMP JNQ + [PQ][MN ][MQ]ηMQJNP ). (6)

[[JMN, PL]] = i(ηLNPM − [MN ]ηLMPN) (7)

where the sign factors [MN ] ≡ (−1)mn are −1 when both indices are fermionic.
In the d = 2 case, in order to extend osp(2, 2/2) to D(2, 1;α), we must modify three

of the anticommutation relations given in (6) and (7) (with the rest remaining the same). The
new relations are

{Lµα, Lνβ} = εαβεµν(J + AJ+−)− ηµνKαβ

{Lµα, Lβ±} = −εαβ(Jµ± ± B±ενµJν±)
{Lα±, Lβ∓} = ±εαβ(J+− ± C±J )−Kαβ.

(8)

For simplicity, we recognize that Jµν is anti-symmetric. This allows us to define the operator J
by

Jµν = εµνJ. (9)

Taking the super-Jacobi identity on Lµα, Lνβ and Lγ± it is straightforward to show that

B± = ∓A
det(η)

.

Taking the super-Jacobi identity on Lµα, Lµ± and Lγ∓ we can show

C± = −A
det(η)

.

Through the use of Cartan generators and weight operators we can eliminate all but one of
A,B±, C± and relate them back to theα parameter inD(2, 1;α). This results in new generators

J̃ = J + aJ+−
J̃+− = J+− + aJ

(10)

with the single parameter a, given by

a = 1 − α

1 + α
. (11)

The modified anti-commutation relations (8) can now be written

{Lµα, Lνβ} = εαβεµνJ̃ − ηµνKαβ

{Lµα, Lβ±} = −εαβ(Jµ± ± aενµJν±)
{Lα±, Lβ∓} = ±εαβJ̃+− −Kαβ.

(12)
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Note that the odd generators close compactly on J̃ , J̃+− (although at the expense of more
complicated commutation brackets). The invariant bilinear form on D(2, 1;α) is

(J, J ) = 1

(J, J+−) = (J+−, J ) = −a
(J+−, J+−) = 1

(Jµ±, Jν±) = −ηµν ± aεµν

(Kαβ,Kγδ) = (1 − a2)
(
εαγ εβδ + εαδεβγ

)
(Lµα, Lνβ) = (1 − a2)ηµνεαβ

(Lα±, Lβ∓) = (1 − a2)εαβ.

And the Casimir C can be written

C = C1 + C2 (13)

where

C1 = −J 2 − J 2
+− +

{
Jµ

+ , Jµ−
} − 1

2K
αβKαβ − LµαLµα − [

Lα
+, Lα−

]
C2 = −a {J, J+−} − aεµν

{
Jµ+, Jν−

}
.

2.2. Superfield realization

For the D(2, 1;α) particle we do not have a physical model such as that laid out between
equations (1) to (3), and so must use the algebraic structure as our only guide. We regard
D(2, 1;α) as a generalization of osp(d, 2/2) (for the d = 2 case) and seek to find a superfield
realization which is equivalent to the case for the scalar relativistic particle for α = 1 and
d = 2.

In the generic d-dimensional osp(d, 2/2) case we can define the homogeneous manifold

M = OSp(d, 2/2)/G0

where the stability group G0 is the semi-direct product

G0 = OSp(d − 1, 2/2) ∧ N
and

OSp(d − 1, 2/2) = 〈Jµν, Lµα,Kαβ〉
N = 〈Jµ−, Lα−〉. (14)

For one-parameter subgroups g(t) with generator A, the standard superfield realization leads
to generators Â acting on functions φ over M, defined by

Âφ(x) =
(

d

dt
φ(g(t)−1x)

)
t=0

(15)

where x ∈ M,

x = (qµ, ηα, φ) ↔ exp(qµJµ+ + ηαLα+) exp(φJ+−)G0

represents the coset.
In a similar fashion, for D(2, 1;α) we define the homogeneous manifold and stability

group as

M = D(2, 1;α)/G̃0

G̃0 = Osp(1, 1/2) ∧ N
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where now OSp(1, 1/2) = 〈J̃ , Lµα,Kαβ〉 and N is unchanged from (14). This leads to
generators Â defined as in (15), except now the coset representatives x ∈ M are given by

x ≡ (qµ, ηα, φ) ↔ exp(qµJµ+ + ηαLα+) exp(φJ̃+−)G̃0.

The superfield realization for D(2, 1;α) is computed in the standard way following (15).
For example, it is clear that the even generators Jµν associated with group elements g(ε) =
exp(εµJµν) simply induce translations in the coordinates qµ, Ĵµ+ = −∂/∂qµ. For later
comparison, we re-scale the variables as follows:

pµ = λ−1qµ θα = λ−1ηα λ = eφ (λ > 0).

Then, finally we have

Jµ+ = −λ−1 ∂

∂pµ
.

In appendix A we explicitly evaluate Jµ+, as well as a further two generators, with the
understanding that the remainder are done in a similar fashion.

The full set of generators for the superfield realization of D(2, 1;α) is

Jµ+ = −λ−1 ∂

∂pµ

Lα+ = −λ−1 ∂

∂θα

Lα− = 1

2
λ(pνpν + θβθβ)

∂

∂θα
− θαλ

2 ∂

∂λ
− aλθαp

µεµ
ν ∂

∂pν

Lµα = pµ
∂

∂θα
− θα

∂

∂pµ
− aθαεµ

ν ∂

∂pν

Kαβ = θα
∂

∂θβ
+ θβ

∂

∂θα

J = −pµεµν ∂

∂pν
+

a

1 − a2

(
λ
∂

∂λ
− pµ

∂

∂pµ
− θα

∂

∂θα

)

J+− = −λ ∂

∂λ
− a2

1 − a2

(
λ
∂

∂λ
− pµ

∂

∂pµ
− θα

∂

∂θα

)

Jµ− = 1

2
λθαθα

∂

∂pµ
+

1

2
λaεµ

νθαθα
∂

∂pν
+

1

2
λεµνερ

σpνpρ
∂

∂pσ

−λ2pµ
∂

∂λ
+

1

2
λpµp

ν ∂

∂pν

−λa(apµ + εµρp
ρ)

1 − a2

(
λ
∂

∂λ
− pν

∂

∂pν
− θα

∂

∂θα

)
.

(16)

If we compare this realization with that obtained for osp(d, 2/2) (see [1]) the similarities
are evident (although the realization of Jµ− requires some attention). In fact, if we allowα → 1
(and thus a → 0), which corresponds to D(2, 1;α) ∼= osp(2, 2/2), then it can easily be seen
that the above relations are in fact identical to those obtained using the standard superfield [1]
for the massless case. In appendix B the closure of these generators on the D(2, 1;α) algebra
is illustrated for the case of the anti-commutator {Lµα, Lνβ} = εαβεµνJ̃ − ηµνKαβ .

2.3. Physical states

The BRST operator for the D(2, 1;α) model can be constructed by considering two linearly
independent spinors ηα and η′α which obey the condition ηαη′

α = 1, for example

ηα = 1√
2

(
1
1

)
η′α = 1√

2

( −1
1

)
.
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We define the ghost number operator in the usual way,

Ngh = ηαη′βKαβ = (η · θ)(η′ · ∂) + (η′ · ∂)(η · ∂) (17)

where ∂α = ∂/∂θα . Similarly we can define the BRST operator as

% = ηαLα−

= ηα
(

1

2
λ(pνpν + θβθβ)

∂

∂θα
− θαλ

2 ∂

∂λ
− aλθαp

µεµ
ν ∂

∂pν

)
. (18)

The physical states can be calculated by considering the effect of % on a superfield

ψ = A + θαχα + 1
2θ

αθαB (19)

(for more detail see [19]). Explicitly we can write

%ψ = 1

2p+
p · p(η · χ) + ηαθα

(
1

2p+
B +

[
∂

∂p+
− a

p+
(pµεµν∂pµ)

]
A

)

+
1

2
θαθα

(
− ∂

∂p+
+

1

p+
(1 + apµεµν∂pν )

)
(η · χ) (20)

and impose the conditions

%ψ = 0 ψ �= %ψ ′ and Nghψ = <ψ

for the maximal eigenvalue < = 1 (in accordance with [19]).
Comparing equations (19) and (20) we see that the components A,χα and B of ψ are

defined up to addition of functions corresponding to coefficients in (20). Imposing the first
condition above, we see that the ηαθα coefficient determines simply the p+-dependence ofA in
terms of some unknown B (which is itself determined up to a p+-derivative of some function).

Looking at ηαχα , we find, respectively, from O(θ0) and O(θ2)

1

2p+
(p · p)(ηαχα) = 0 (21)

(
∂

∂p+
− 1 + apµεµν∂

ν

p+

)
(ηαχα) = 0. (22)

We can write pµ in component form as

p
µ

R = 1√
2
(pµ + εµνp

ν)

p
µ

L = 1√
2
(pµ − εµνp

ν).

Assuming that ηαχα = φ(p), where φ(p) is a function of the form

φ(p) = p+ϕ ((1 + a lnp+)pR, (1 − a lnp+)pL)

we have

∂

∂p+
φ(p) = 1

p+

(
1 + a

(
pµεµ

ν ∂

∂pν

))
φ

as in (22). Hence the given form of φ(p) solves equation (22).
Enforcing (21) gives that φ(p) satisfies p · p = 0, or

1

2p+
pR · pLp+ϕ(ζ

+pR, ζ
−pL) = 0
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where ζ± = 1 ± a lnp+. Equivalently, in Fourier space the constraints are solved by the
physical states

ϕ(xR, xL) ≡
∫
(χ · ψ)e−ip·x dx

that satisfy

∂

∂xR

∂

∂xL
ϕ

(
xR

ζ +
,
xL

ζ−

)
= 0. (23)

Moreover, if we assume Hψ = 0 (H the Hamiltonian) on the physical states and we assume
the Schrödinger equation

H = −i
d

dτ
then these functions are independent of τ .

Finally, by once again employing the triviality of Im% for the maximal ghost number we
can show that the physical state is unique, as there is no function ψ ′ such that ψ = %ψ ′ lies
in the same cohomology as ψ .

The system we have constructed can be interpreted as the ‘quantization’ of a classical
‘D(2, 1;α)’ particle. The p+-dependence on physical wavefunctions provides indirect
evidence that the model involves a more subtle implementation of world line diffeomorphisms
than usual. Note that the two-dimensional case has the unique property that Lorentz invariance
is not broken. The metric xµxνηµν = xRxL is still a world-line scalar if xR, xL transform as
densities:

x ′
R,L(τ

′) dτ ′±a = xR,L(τ ) dτ±a.

Corresponding covariant actions may be responsible (after gauge fixing) for the p+-scaling
behaviour4.

3. Classical Hamiltonian and action

In the previous section we did not explicitly calculate the corresponding Hamiltonian H =
−{F, %}, nor did we specify a gauge fixing function F . The reason behind this is simple: as
we have no classical model with which to compare our quantized particle we do not have any
guide as to what our quantized Hamiltonian should look like, and thus no guide as to which
gauge fixing function F we should choose. In this section we postulate an F which leads to an
acceptable looking Hamiltonian, and from there derive a classical action S. This is the action
which defines the classical system which corresponds to the quantum system derived from the
algebraic structure in section 2.

By definition the gauge fixing fuction F is Grassmann odd and has ghost number −1, thus
it obeys the equation[[

Ngh,F
]] = −F . (24)

As well as these constraints on F , in theD(2, 1;α) system we must make sure that Hamiltonian
generated is general enough to encompass the extended behaviour of the system (as compared
with the corresponding osp(2, 2/2) system) and that in the limit α → 1 it reduces to the
Hamiltonian for the osp(2, 2/2) system of [1].

Firstly we express the ghost number operator (see (17)) as

Ngh = 1
2 (K22 −K11) = θ2∂2 − θ1∂1.

4 The gauge equivalence class of λ, or e, namely
∫ τf
τi

e(τ ) dτ , is proportional to λ in the present case λ̇ = 0.
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As a first guess at the gauge fixing function we choose F = η′αθα (where η′ is one of the spinors
introduced in the previous section). This function has ghost number −1 and is Grassmann
odd; checking that it satisfies (24) we get

[[
Ngh,F

]] = 1√
2
{θ2∂2 − θ1∂1, θ2 − θ1} = − 1√

2
(θ2 − θ1) = −F

as we desire. However this F falls down when we generate the corresponding Hamiltonian,
which is found to be independent of α. Thus the Hamiltonian generated by this gauge fixing
function cannot reproduce the α-dependent quantized system of section 2.

Our second choice for the gauge fixing function is F = η′α∂α . This function also satisfies
the necessary conditions; however, it once again falls down when we generate the Hamiltonian,
as thisH does not revert to the osp(2, 2/2)Hamiltonian asα → 1. Thus we are led to choosing
our gauge fixing function as a scalar combination of the two given above, i.e.

F = 1√
2
((θ2 − θ1) + b(∂1 − ∂2)) (25)

where b is an arbitrary scalar, and we have changed the overall sign of the second term.
This F is Grassmann odd, has ghost number −1 and obeys equation (24). The corresponding
Hamiltonian can now be calculated:

H = [[%,F]] = [[%,Fθ − bF∂ ]]

[[%,Fθ ]] = [[
1
2λp

2(∂1 + ∂2) + 1
2λθ

βθβ(∂1 + ∂2), θ2 − θ1
]]

= − 1
2λ(p

2 + θβθβ)

and

[[%,−F∂ ]] = 1
2

[[ − (θ1 + θ2)λ
2∂λ − aλ(θ1 + θ2)p

µενµ∂ν + λθβθβ(∂1 + ∂2), ∂a − ∂2
]]

= λ2∂λ + aλpµενµ∂ν + 1
2λ(θ1 − θ2)(∂1 + ∂2).

Thus the Hamiltonian for the D(2, 1;α) system is

H = − 1
2λ

(
p2 + θβθβ

)
+ bλ2∂λ + abλpµενµ∂ν + 1

2bλ(θ1 − θ2)(∂1 + ∂2) (26)

where λ = 1/p+. Notably this action is general enough so as to encompass the special
behaviour of the D(2, 1;α) system (as a = a(α)) and can reduce to the Hamiltonian for the
massless scalar particle in the osp(2, 2/2) case of [1].

Having derived the Hamiltonian of the D(2, 1;α) system we now seek to calculate
the corresponding classical action and Lagrangian L. We do this by means of a Legendre
transformation and the Hamiltonian equations of motion. Given the Hamiltonian, we can
write the Lagrangian as

L =
∑

q̇p −H(q, p) (27)

where q, p are the generalized coordinates of H . q̇ is calculated by means of the Hamiltonian
equations of motion:

ẋµ = ∂H

∂pµ
= λ(−pµ + abεµν x

ν)

λ̇ = ∂H

∂∂λ
= bλ2

θ̇ α = ∂H

∂∂α
= 1√

2
λb(θ1 − θ2)η

α∂α

∴ θ̇ α∂α = 1
2λb(θ1 − θ2)(∂1 + ∂2).

(28)
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Note that here we have used

ηα∂α = 1√
2
(∂1 + ∂2).

From the first of these equations we can write

pµ = − ẋµ

λ
− abεµνx

ν

and so, by substituting the above expressions into (27), we get

L = ẋµ
(

− ẋµ

λ
− abεµνx

ν

)
+ bλ2∂λ +

1

2
λb(θ1 − θ2)(∂1 + ∂2)

+
1

2
λ

((−ẋµ
λ

− abεµνx
ν

) (−ẋµ
λ

− abεµνxν

)
+ θβθβ

)
− bλ2∂λ

−abλ
(
ẋµ

λ
− abεµν x

ν

)
ενµxν − 1

2
bλ(θ1 − θ2)(∂1 + ∂2). (29)

Thus the Lagrangian can be written

L = −1

2

ẋ2

λ
− λ

1

2
(ab)2x2 − abεµνẋ

µxν +
1

2
λθβθβ. (30)

The classical Lagrangian (and action) corresponding to the quantum Hamiltonian (26)
should be free of ghosts (as they only arise in the extended phase space of the BFV–BRST
construction). Likewise the canonical momentum conjugate to the Lagrange multiplier λ
should not be present. Thus we arrive at the classical action of the D(2, 1;α) system by
decoupling the ghost sector from the action above, i.e. only considering the bosonic part

S =
∫ τf

τi

dτ

[
−1

2

ẋ2

λ
− λ

1

2
(ab)2x2 − abεµνẋ

µxν
]
. (31)

By comparing this with the action given in [1] we can see that (31) corresponds to a massless
scalar particle in a potential well. In fact if we ignore the last term in (31) then we have arrived
at the classical action of an oscillating massless particle (i.e. where the potential is proportional
to x2). For further details of the oscillator in the classical or quantum case see [20, 21]. The
final term of (31) introduces a cross term between velocity and position. Comparing this
term with the potential term in [1], we see that the cross term is similar to that produced by a
homogeneous electromagnetic field Fµν = abεµν .

The action (31) also satisfies the condition that as a → 0 (which is equivalent to α → 1),
L becomes the Lagrangian of the massless scalar particle. The constant b is also important
as it distinguishes between the parts of the action that arise from each of the two gauge fixing
functions we tried earlier; Fθ and F∂ . We can now set b = 1 without affecting the behaviour
of the particle.

For the sake of completeness, we shall identify the total covariant energy and angular
momentum of the classical D(2, 1;α) particle, as well as calculating the Euler–Lagrange
equations of motion. The total covariant energy is given by

Pµ = ∂L
∂ẋµ

= − ẋµ

λ
− abεµνx

ν.

The total angular momentum is

Mµν = Pµxν − Pνxµ

= 1

λ
(ẋνxµ − ẋµxν) + ab(ενρxµ − εµρxν)x

ρ. (32)
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The Euler–Lagrange equations of motion are

− ẍµ

λ
+ (ab)2λxµ − 2abεµνẋ

ν = 0 (33)

ẋ2

2λ2
− (ab)2x2 = 0. (34)

By virtue of the fact that the Lagrangian is independent of λ̇, the second of these two equations
is actually a constraint on the system. Hence, the Hessian of the Lagrange function vanishes
identically, except for its components ∂2L/(∂ẋµ∂ẋν) [12], thereby illustrating the singular
nature of the action (31). Thus we can identify (34) as a first-class constraint of the D(2, 1;α)
system.

Now that we have determined the classical action corresponding to theD(2, 1;α) particle
it is possible to start the loop again, so to speak: that is, identify the first class constraints,
extend the phase space and follow the BFV–BRST quantization procedure in order to arrive at
the quantizedD(2, 1;α) particle. However, we shall not do this; given that we correctly choose
the gauge fixing condition for the scalar particle condition we would end up with exactly the
same quantized system as system as that obtained in section 2. Secondly, the aim in this paper
is to study the algebras of quantization, whch we have already done for the D(2, 1;α) particle
in the previous section.

4. Conclusion

In this paper we have shown that it is possible to extend the BFV–BRST quantization algebra
iosp(d, 2/2) in two dimensions into the more general classical simple Lie superalgebra
D(2, 1;α). To do this we started without a classical physical model of a particle, and so relied
entirely on the algebraic structure as our guide. In section 2 we showed that the algebraic
model that we had constructed was an admissible quantization superalgebra, and so provided a
quantization of the corresponding classical system. In section 3 we then calculated the classical
action corresponding to the quantum system. If this action were used as a starting point, then
the BFV–BRST process could be followed and the quantum system of equation (2) would be
derived.

An alternative (and equally valid) method of presenting this paper would have been to start
with the classical action (31) and from there proceed to quantize the system and demonstrate
that it obeys a D(2, 1;α) quantization superalgebra.
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Appendix A. Calculations for superfield realization

In this appendix we explicitly calculate the superfield realization forD(2, 1;α) by introducing
formal group elements g = eφ·F for the generators F1, F2, . . . , FN and graded parameters
φ1, φ2, . . . , φN and evaluate the product

h · g = eε·F eφ·F
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in order to find the product map µ(ε, φ) to first order in ε.
Thus we can calculate Jµ+ as follows:
Let ε = eε

µJµ+ , then

ε−1 · x = e−εµJµ+ eq
µJµ++ηαLα+ eφJ̃+−G0

= e(q
µ−εµ)Jµ++ηαLα+ eφJ̃+−G0.

So if we consider functions f (qµ, ηα, φ), then

εf (qµ, ηα, φ) = f (q − ε, η, φ) (A.1)

and so

δf = εf − f = −εµ ∂

∂qµ
f (qµ, ηα, φ) + · · · .

Hence from (15) we can write

Jµ+ = − ∂

∂qµ
. (A.2)

We shall explicitly calculate a further two generators, with the understanding that the
remainder can be derived in a similar fashion.

Let ξ = eξ
αLα+ , thus

ξ−1x = e−ξαLα−eq
µJµ++ηαLα+ eφJ̃+−G0

= eq
µJµ+ eη

αLα+−ξαLα+ eφJ̃+−G0.

Therefore we can see that

δf = −ξα ∂

∂ηα
f + · · ·

and so we have the realization

Lα+ = − ∂

∂ηα
. (A.3)

Once again, scaling variables gives us Lα+ in the momentum representation

Lα+ = −λ−1 ∂

∂θα
.

Lastly, we shall calculate Lµα; let ρ = eρ
µαLµα , and so we have

ρ−1x = e−ρµαLµαeq
µJµ++ηαLα+ eφJ̃+−G0

= eq
µJµ+−[ρναLνα,q

µJµ+]eη
αLα+−[ρναLνα,η

βLβ+]eρ
µαLµαeφJ̃+−G0.

To simplify this expression we use the commutation relations

qµρνα[Jµ+, Lνα] = ρναqνLα+

−ηβρνα{Lνα, Lβ+} = ηβρναεαβ(Jν+ + aεµν Jµ+)

= −ρναηαJν+ − aρµαηαε
ν
µJµ+.

Thus we can write

ρf (q, η, φ) = f (qµ − ρµαηα − ρναaηαε
µ
ν , η

α + ρναqν, φ)

and so

Lνα = −ηα
(

∂

∂qν
+ aεµν

∂

∂qµ

)
+ qν

∂

∂ηα
. (A.4)

Once again, changing to momentum representation and re-arranging gives us

Lµα = pµ
∂

∂θα
− θα

∂

∂pµ
− aθαεµ

ν ∂

∂pν
.
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Appendix B. Closure of algebra generated by JMN

Although the commutation relations of the generators JMN given in (16) must be equal to those
given in (12) and (6), we shall test this by calculating {Lµα, Lνβ} (we could choose any of the
relations).

Equation (12) tells us that {Lµα, Lνβ} = εαβεµνJ̃ − ηµνKαβ . Using the definition of Lµα

given in (A.4) gives

{−ηα∂µ − aηαε
ν
µ∂σ + qµ∂α,−ηβ∂ν − aηβε

ρ
ν ∂ρ + qν∂β}

= − {ηα∂µ, qν∂β} − a{ηαεσµ∂σ , qν∂β} − {qµ∂α, ηβ∂ν} − a{qµ∂α, ηβερν ∂ρ}.
Note that the first and third terms are identical, except for the indices, as are the second and
fourth terms. Using the identity

{AB,CD} = 1
2 {A,C}{B,D} + 1

2 [A,C][B,D]

where [A,B] = [C,D] = 0, we have that the first term is

− 1
2ηµν(2ηα∂β − εαβ)− 1

2εαβ(2qν∂µ + ηµν).

So terms one and three sum to

εαβ(qµ∂ν − qν∂µ)− ηµν(ηα∂β + ηβ∂α).

In a similar fashion, we get that the second and fourth terms sum to

−aεµνεαβηγ ∂γ − aεαβεµνq
ρ∂ρ.

Combining these two expressions together we get

{Lµα, Lνβ} = εµνεαβ
(−qρεσρ ∂σ − aqρ∂ρ − aηγ ∂γ

) − ηµν
(
ηα∂β + ηβ∂α

)
= εµνεαβJ̃ − ηµνKαβ (B.1)

as claimed.
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